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Effective Hamiltonian and unitarity of the S matrix

I. Rotter
Max-Planck-Institut fu¨r Physik komplexer Systeme, D-01187 Dresden, Germany

~Received 27 February 2003; published 15 July 2003!

The properties of open quantum systems are described well by an effective HamiltonianH that consists of
two parts: the HamiltonianH of the closed system with discrete eigenstates and the coupling matrixW between
discrete states and continuum. The eigenvalues ofH determine the poles of theSmatrix. The coupling matrix

elementsW̃k
cc8 between the eigenstatesk of H and the continuum may be very different from the coupling

matrix elementsWk
cc8 between the eigenstates ofH and the continuum. Due to the unitarity of theSmatrix, the

W̃k
cc8 depend on energy in a nontrivial manner. This conflicts with the assumptions of some approaches to

reactions in the overlapping regime. Explicit expressions for the wave functions of the resonance states and for
their phases in the neighborhood of, respectively, avoided level crossings in the complex plane and double
poles of theS matrix are given.
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I. INTRODUCTION

Quantum systems are characterized by a number of
crete states the structure of which is more or less com
cated. These quantum systems do, however, not exist iso
from other systems. Most of them are embedded in an e
ronment, e.g., in the continuum of decay channels. Sys
and environment interact with one another, and it is this
teraction that allows us to study the properties of the syst
The feedback of the interaction with the environment o
the properties of the system itself is an old problem raise
the very beginning of the quantum mechanics. It becom
the more important the smaller the system is.

As an example, most states of a nucleus are embedde
the continuum of decay channels due to which they ge
finite lifetime. In other words, the discrete states of a nucl
shade off into resonance states with complex energiesEk

5Ek2( i /2)Gk . The valuesEk give the positions in energy
of the resonance states, while the widthsGk are characteristic
of their lifetimes. The valuesEk may be different from the
energies of the discrete states, and the widthsGk may be
large corresponding to a short lifetime. Nevertheless, ther
a well-defined relation between the discrete states chara
izing the closed system and the resonance states appear
the open system. The main difference in the theoretical
scription of quantum systems without and with coupling
an environment is that the function space of the system
supposed to be complete in the first case, while this is no
in the second case. Accordingly, the Hamilton operator
Hermitian in the first case, and the eigenvalues are disc
The resonance states, however, characterize a subsyste
scribed by a non-Hermitian Hamilton operator with compl
eigenvalues. The function space containing everything c
sists, in the second case, of system plus environment.

The mathematical formulation of this problem goes ba
to Feshbach@1# who introduced the two subspacesQ andP,
with Q1P51, containing the discrete and scattering sta
respectively. Feshbach was able to formulate a unified
scription of nuclear reactions with direct processes in
short-time scale and compound nucleus processes in
1063-651X/2003/68~1!/016211~13!/$20.00 68 0162
is-
li-
ted
i-
m
-
.

o
in
s

in
a
s

is
er-
g in
e-

is
so
s
te.
de-

n-

k

s,
e-
e
he

long-time scale. Due to the high excitation energy and h
level density in compound nuclei, he introduced statisti
approximations in order to describe the discrete states of
Q subspace. A unified description of nuclear structure a
nuclear reaction aspects is much more complicated and
came possible only at the end of the last century~see Ref.@2#
for a recent review!. In this formulation, the states of bot
subspaces are described with the same accuracy. All the
pling matrix elements between different discrete states,
ferent scattering states as well as between discrete and
tering states have to be calculated in order to get results
can be compared with the experimental data. This met
has been applied to the description of light nuclei by us
the shell model approach for the discrete many-particle st
of the Q subspace@2#.

In the unified description of structure and reaction a
pects, the system is described by an effective HamiltonianH
that consists of two terms: the Hamiltonian matrixH of the
closed system with discrete eigenstates, and the coupling
trix between system and environment. The last term is
sponsible for the finite lifetime of the resonance states. T
eigenvalues ofH are complex and give the poles of theS
matrix. The motion of these eigenvalues as a function o
certain parameter is discussed in many papers~see for the
recent review Ref.@2#!. The statistics of complex eigenvalue
and the corresponding nonorthogonal eigenvectors for n
Hermitian random matrices are recently considered
Ref. @3#.

The coupling matrix elementsW̃k
cc8 between the reso

nance states and the continuum are seldom studied. T
relation to the coupling matrix elementsWk

cc8 between the
corresponding discrete states and the continuum can be
pressed by the mixing coefficients that appear in the rep
sentation of the wave functions of the resonance states in
set of wave functions of the discrete states. Generically,
relation between the wave functions of the resonance st
and those of the discrete states is complicated since the n
ber of discrete states of a realistic system is large. Many
them can contribute to the wave function of a certain re
nance state, almost independently of their energetical
©2003 The American Physical Society11-1
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I. ROTTER PHYSICAL REVIEW E 68, 016211 ~2003!
tance, see, e.g., Ref.@4#. The numerical results for the cou

pling matrix elementsW̃k
cc8 of nuclear states show

nontrivial energy dependence, especially at high level d
sity @2#. In the statistical approach to nuclear reactions a
the application of this approach to some other reactions, t
are, however, assumed to be simple, energy-independen
rameters such as theWk

cc8 , e.g., Refs.@5–9#.
The aim of the present paper is~i! to study the energy

dependence of the coupling matrix elementsW̃k
cc8 between

resonance states and continuum that follows immedia
from the unitarity of theS matrix, and~ii ! to study the be-
havior of the wave functions of the resonance states in
overlapping regime since these determine the energy de

dence of theW̃k
cc8 in numerical calculations performed fo

special systems. Most interesting is the behavior of the w
functions near avoided level crossings in the complex pla

As the results show, the coupling coefficientsW̃k
cc8 are,

generically, energy dependent. The energy dependenc
however, not important as long as the distance in ene
between the resonance states is larger than the sum of
widths. This result is in full agreement with the statement
the authors of the review@5# who restricted the application o
their approach to the nonoverlapping regime. In the overl
ping regime, however, the energy dependence of the c

pling coefficientsW̃k
cc8 cannot be neglected. It follows from

the unitarity of theSmatrix and causes nonlinear terms in t
Smatrix at high level density. Nevertheless, the line shape
the resonances can equivalently be described by the en
independentWk

cc8 in many cases. TheWk
cc8 lose, however,

their physical meaning in the overlapping regime@10#. As to
the wave functions of two resonance statesk and l in the
neighborhood of an avoided level crossing in the comp

plane, these are mixed:bkF̃k6 ib lF̃ l . The corresponding
phase changes in approaching the critical value of the par
eter at which the levels avoid crossing~wherebk56b l) are
caused by nonlinear terms in the Schro¨dinger equation.
These terms are, finally, responsible for the energy dep

dence of the coupling coefficientsW̃k
cc8 between system an

continuum in numerical calculations. This result followin
from the behavior of the wave functions of the resonan
states at high level density coincides with that followi
from the unitarity of theS matrix.

The paper is organized in the following manner. In Sec.
the main ingredients of the unified description of structu
and reaction aspects of a quantum system embedded
continuum are given. These are the effective HamiltonianH
of the system and theS matrix. Both are derived by solving
the Schro¨dinger equation in the full function space with di
crete and continuous states. Further, some properties o
spectroscopic values that characterize the system
sketched with special emphasis of their behavior in the ov

lapping regime. In Sec. III, the coupling coefficientsW̃ be-
tween system and continuum are directly obtained in
one-channel case by starting from a unitaryS matrix. The
nonlinear effects appearing in the overlapping regime
discussed. The wave functions at avoided level crossing
01621
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the complex plane and in its neighborhood are derived
Sec. IV. They are energy dependent and their phases ch
in a certain range around the critical value of the parame
at which the resonance states avoid crossing. Section V
tains concluding remarks on the energy dependence of

coupling coefficientsW̃k
cc8 appearing in a model with a uni

fied description of structure and reaction aspects at high le
density.

II. EFFECTIVE HAMILTONIAN AND S MATRIX
FOR A QUANTUM SYSTEM EMBEDDED

IN A CONTINUUM

In the unified description of structure and reaction aspe
of quantum systems, the Schro¨dinger equation

~H full2E!C~E!50 ~1!

is solved in a function space containing everything, i.e., d
crete as well as continuous states. The Hamilton oper
H full is Hermitian, the wave functionsC depend on energy
as well as on the decay channels and all the resonance s
of the system. Knowing the wave functionsC(E), an ex-
pression for theS matrix can be derived which holds tru
also in the overlapping regime, see the recent review@2#. It
reads

Scc85ei (dc2dc8)@dcc82Scc8
(1)

2Scc8
(2)

#, ~2!

wheredc is the phase shift in channelc, Scc8
(1) is the smooth

direct reaction part related to the short-time scale, and

Scc8
(2)

5 i (
k51

N g̃k
cg̃k

c8

E2Ẽk1
i

2
G̃k

~3!

is the resonance reaction part related to the long-time sc
Here, theẼk5Ẽk2( i /2)G̃k are the complex energy depen
dent eigenvalues of the non-Hermitian Hamilton operator

H[HQQ5HQQ1HQPGP
(1)HPQ ~4!

appearing effectively in the system (Q subspace! after em-
bedding it into the continuum (P subspace!. It is H full

[HQQ1HQP1HPQ1HPP where HQQ is the Hamiltonian
of the closed system andHPP is that for the environmen
~scattering states!. The two termsHPQ andHQP characterize
the coupling between the two subspaces. These two te
appear in the source terms of the equations in either subs
when Q1P51 as well as in the effective Hamiltonians o
the subspaces. The effective Hamiltonian in theQ subspace
is given in Eq.~4!, and an analogous expression for the
fective Hamiltonian in theP subspace can be written down
see Ref. @2#. Usually, Re(HQPGP

(1)HPQ)Þ0 and Re(H)
[HQQ1Re(HQPGP

(1)HPQ)ÞHQQ , see Ref.@2# for a de-
tailed discussion. TheGP

(1) in Eq. ~4! are the Green func-
tions in the P subspace, and Im(HQPGP

(1)HPQ) is deter-
mined by the coupling matrix elements
1-2
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g̃k
c5A2p^jE

c uVuF̃k& ~5!

between the resonance states and the scattering states. Tg̃k
c

are complex and also energy-dependent functions. In Eq.~5!,

the jE
c are the scattering wave functions and theF̃k are the

eigenfunctions ofH, Eq. ~4!. The wave functionsṼk of the

resonance states are related to the eigenfunctionsF̃k of H by
a Lippmann-Schwinger-like relation@2#,

Ṽk5~11GP
(1)HPQ!F̃k . ~6!

The eigenfunctions ofH are biorthogonal,

^F̃ l* uF̃k&5dkl , ~7!

so that

^F̃kuF̃k&5Re~^F̃kuF̃k&!; Ak[^F̃kuF̃k&>1 ~8!

and

^F̃kuF̃ lÞk&5 i Im~^F̃kuF̃ lÞk&!52^F̃ lÞkuF̃k&;

Bk
lÞk[u^F̃kuF̃ lÞk&u>0. ~9!

It should be noticed that the standard normalizat

^F̃ l uF̃k&5dkl is equivalent to Eqs.~7!–~9! for all k,l but
those with Ẽk5 Ẽl ~double pole of theS matrix! where Ak

→` andBk
l →`. As a consequence of Eq.~8! holds @2#

G̃k5

(
c

ug̃k
cu2

Ak
<(

c
ug̃k

cu2. ~10!

The main difference to the standard theory is that

g̃k , G̃k
c , andẼk are not numbers but energy-dependent fu

tions @2#. The energy dependence of Im$Ẽk%52 1
2 G̃k is large

near to the threshold for opening the first decay channel. T
causes not only deviations from the Breit Wigner line sha
of isolated resonances lying near to the threshold but als
interference with the above-threshold ‘‘tail’’ of bound stat
@2#. Also, an inelastic threshold may have an influence on
line shape of a resonance when the resonance lies near t
threshold and is coupled strongly to the channel which op

@11#. Also, in this case,G̃k depends strongly on energy. In th
cross section, a cusp may appear in the cross section ins
of a resonance of Breit Wigner shape. Both types of thre
old effects in the line shape of resonances can explain
perimental data known in nuclear physics@2#. They cannot
be simulated by a parameter in theS matrix.

The energy dependence ofẼk and G̃k may be important
also far from decay thresholds@2#. Characteristic of the mo
01621
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tion of the poles of theS matrix as a function of a certain
parameter~which may be also the energyE of the system!
are the following generic results obtained for very differe
systems in the overlapping regime: the trajectories of thS
matrix poles avoid crossing with the only exception of exa
crossing when theS matrix has a double~or multiple! pole.
At the avoided crossing, either level repulsion or level attr
tion occurs. The first case is caused by a predominantly
interaction between the crossing states and is accompa
by the tendency to form a uniform time scale of the syste
Level attraction occurs, however, when the interaction
dominated by its imaginary part arising from the coupli
via the continuum. It is accompanied by the formation
different time scales in the system: while some of the sta
decouple more or less completely from the continuum a
become long-lived~trapped!, a few of the states becom
short-lived and wrap the long-lived ones in the cross sect
The dynamics of quantum systems at high level density
determined by the interplay of these two opposite tendenc
For a more detailed discussion, see Ref.@2#.

One of these tendencies, the phenomenon of reson
trapping

(
k51

N

G̃k' (
K51

K

G̃k ; (
k5K11

N

G̃k'0, ~11!

appears only in the overlapping regime. It is caused
Im(H) and means almost complete decoupling ofN2K
resonance states from the continuum, whileK of them be-
come short-lived@2#. Usually, K!N2K. The long-lived
resonance states in the overlapping regime appear often
well isolated from one another@10#. The few short-lived
resonance states determine the evolution of the system.
means, quick direct reaction processes may appear, at
overall coupling strength, from slow resonance processe
means of the resonance trapping phenomenon. Meanw
the phenomenon of resonance trapping has been proven
perimentally on a microwave cavity as a function of the d
gree of opening of the cavity to an attached lead@12#. In this
experiment, the varied parameter is the overall coupl
strength between discrete and scattering states. Reson
trapping may appear, however, as a function of any par
eter @2#.

In any case, the energies and widths of the resona
states follow from the solutions of the fixed-point equation

Ek5Ẽk~E5Ek! and Gk5G̃k~E5Ek!, ~12!

on condition that the two subspaces are defined adequa
@2#. The valuesEk andGk correspond to the standard spe
troscopic observables. The wave functions of the resona

states are defined by the functionsṼk , Eq. ~6!, at the energy
E5Ek . The partial widths are related to the coupling mat
elements (g̃k

c)2 that are calculated independently by mea

of the eigenfunctionsF̃k of H. For isolated resonances,Ak
51 according to Eq.~8!, and the standard relationGk

5(cugk
cu2 follows from Eq.~10!. In the overlapping regime
1-3
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I. ROTTER PHYSICAL REVIEW E 68, 016211 ~2003!
the partial widths lose their physical meaning, sinceA.1.

Both functions (g̃k
c)2 and G̃k may even show a different en

ergy dependence@2#.
It follows immediately from Eq.~4! that the coupling of

the resonance states via the continuum induces additi
correlations between the states. These correlations are
scribed by the termHQPGP

(1)HPQ of the effective Hamil-
tonianH. The real part Re(HQPGP

(1)HPQ) causes level re-
pulsion in energy and is accompanied by the tendency
form a uniform time scale in the system. In contrast to t
behavior, the imaginary part Im(HQPGP

(1)HPQ) causes dif-
ferent time scales in the system and is accompanied by l
attraction in energy. Thus, an essential part of the ene
dependence of the eigenvalues ofH is caused by the addi
tional correlations of the states via the continuum. These
important, above all, at high level density.

For isolated resonance states, the additional shift in
ergy is usually taken into account by simulating Re(H)
5HQQ1Re(HQPGP

(1)HPQ) by H01V8, where V8 is as-
sumed to be describable by two-body effective resid
forces. It should be mentioned, however, th
Re(HQPGP

(1)HPQ) cannot be completely simulated by an a
ditional contribution to the residual two-body interactio
even in the case of well-isolated resonances, since it cont
many-body effects, as follows from the analytical structu
of HQPGP

(1)HPQ . Re(HQPGP
(1)HPQ) is an integral over en-

ergy and depends explicitly on the energiesec at which the
channelsc open. For details, see Ref.@2#.

Spectroscopic studies in the overlapping regime are m

complicated. The wave functionsF̃k may be represented i
the set of eigenfunctions$Fk% of the Hermitian Hamilton
operatorH[HQQ ,

F̃k5(
l

bklF l . ~13!

The Fk are real, while theF̃k are complex and energy de
pendent in the overlapping regime. The coefficientsbkl and
the g̃k

c are complex and energy dependent, too. In this
gime, the differences betweenH andH therefore cannot be
simulated in a simple manner. Even the positions of
peaks in the cross section do, generally, not appear at
energiesEk when the resonance states overlap@2#. This is the
result of interferences between the resonance states.

It should be underlined here that expression~3! for the
resonance reaction part of theS matrix is derived from the
Schrödinger equation~1! by rewriting it in a consistent man

ner. Here, the eigenvaluesẼk5Ẽk2( i /2)G̃k of the effective
HamiltonianH, Eq. ~4!, as well as the coupling matrix ele
mentsg̃k

c , are energy-dependent functions, and the unita
of the S matrix is guaranteed.

Furthermore, the differentF̃k(E5Ek) are neither strictly
orthogonal nor biorthogonal since the biorthogonality re
tion ~7! holds only when the energies of both statesk and l
are equal. The spectroscopic studies on resonance state
performed, therefore, with the wave functions being o
01621
al
de-

to
s

el
y

re

n-

l
t

ins
e

re

-

e
he

y

-

are

approximately biorthogonal. The deviations from the bio
thogonality relation~7! are, however, small as a rule. Th
drawback of the spectroscopic studies of resonance state
to be contrasted with the advantage it has for the study
observable values: theS matrix and therefore the cross se
tion are calculated with the resonance wave functions be
strictly biorthogonal at every energyE of the system. Fur-

thermore, the full energy dependence ofẼk ,G̃k and, above
all, of the coupling matrix elementsg̃k

c is taken into account
in the S matrix and therefore in all calculations for obser
able values.

III. UNITARITY OF THE S MATRIX

The Breit Wigner one-level formula for nuclear reactio
describes the reaction cross section with isolated resonan
The S matrix elements for this case read

Scc8512 i (
k

W̃k
cc8

E2Ẽk1
i

2
G̃k

, ~14!

where Ẽk and G̃k are the energies and widths of the res

nance statesk, respectively, andW̃k
cc8[g̃k

cg̃k
c8 . The g̃k

c are
the partial widths of the statesk relative to the channelc. The

valuesẼk ,G̃k , and g̃k
c are numbers characterizing the pro

erties of the resonance statesk. Since they are energy
independent values, the decay follows an exponential law

For an isolated resonance statek51 coupled to one chan
nel,

S512 i
W̃1

E2Ẽ11
i

2
G̃1

~15!

in the energy rangeẼ12 1
2 G̃1<E<Ẽ11 1

2 G̃1, and W̃15G̃1
due to the unitarity of theS matrix. The last relation follows
immediately from Eq.~15! that, in the one-resonance-on
channel case, can be written as

S5

E2Ẽ12
i

2
G̃1

E2Ẽ11
i

2
G̃1

~16!

whenW̃15G̃1. TheS matrix ~16! is unitary.
Let us now consider the unitary representation of theS

matrix in the one-channel case with two resonance state

S5

S E2Ẽ12
i

2
G̃1D

S E2Ẽ11
i

2
G̃1D

S E2Ẽ22
i

2
G̃2D

S E2Ẽ21
i

2
G̃2D . ~17!

From this expression, a possible form of the pole repres
tation of theS matrix can be derived,
1-4



EFFECTIVE HAMILTONIAN AND UNITARITY OF TH E . . . PHYSICAL REVIEW E 68, 016211 ~2003!
S512
i G̃1

E2Ẽ11
i

2
G̃1

2
i G̃2

E2Ẽ21
i

2
G̃2

2
G̃1G̃2

S E2Ẽ11
i

2
G̃1D S E2Ẽ21

i

2
G̃2D

512
1

E2Ẽ11
i

2
G̃1
S i G̃11

G̃1G̃2

2E2~Ẽ11Ẽ2!1
i

2
~ G̃11G̃2!D

2
1

E2Ẽ21
i

2
G̃2
S i G̃21

G̃1G̃2

2E2~Ẽ11Ẽ2!1
i

2
~ G̃11G̃2!D . ~18!
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It follows

S512 i (
k51,2

W̃k

E2Ẽk1
i

2
G̃k

, ~19!

in complete analogy to Eq.~14!, with

W̃k5G̃kS 12 i
G̃ l

2E2~Ẽk1Ẽl !1
i

2
~ g̃k1G̃ l !

D ~20!

andk,l 51,2, lÞk. These equations show that the coupli

coefficientsW̃k are complex and energy dependent, thatW̃k

has a resonance behavior at the energy (Ẽk1Ẽl)/2 with the

width (G̃k1G̃ l)/2, and that the energy dependence of the t

valuesW̃k and G̃k is different in the overlapping regime. I

the energy region of the resonance behavior ofW̃k caused by
a neighbored resonance statel, the S matrix contains terms
being nonlinear in energy.

When the widths of the two states are equal,W̃k→0 with

E→(Ẽk1Ẽl)/2. At large distance,E@Ẽ11Ẽ2, follows W̃k

→G̃k . In this case, the two resonance states behave as
lated ones. When the positionsẼk ,Ẽl of the two resonance

states are outside of the resonance region ofW̃k andW̃l , the
resonances can also be considered, to a good approxima

as isolated, andW̃k'G̃k ,W̃l'G̃ l .
The nonlinear term creates some deviation in the re

nance line shape from the linear Breit-Wigner one. This c
be seen best in the case when theSmatrix has a double pole

i.e., Ẽ15Ẽ2[Ẽd and G̃15G̃2[G̃d . In such a case, theS
matrix ~19! reads

S5122i
W̃d

E2Ẽd1
i

2
G̃d

5122i
G̃d

E2Ẽd1
i

2
G̃d

2
G̃d

2

S E2Ẽd1
i

2
G̃dD 2 . ~21!
01621
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The second term corresponds to the usual linear term, w
the third term is quadratic~see Ref.@13#!. The interference
between these two parts has been illustrated in Ref.@14#,
where the cross section is shown for the case of two re
nance states coupled to one channel. The energies and w
of the two resonance states are the same, creating a do
pole of theSmatrix. The asymmetry of the line shape of bo
peaks in the cross section agrees with Eq.~21!. A similar
picture has been obtained in, e.g., laser induced continu
structures in atoms with a double pole of theS matrix
@15,16#, in atom-surface collisions@17#, transmission in
quantum scattering systems@18#, in a double barrier potentia
@19#, a double-square-well system@20#, and in a toy model
for the conductance through a small quantum dot@21#.

According to Eq.~20!, the asymmetry of narrow reso
nances is usually larger than that of broad resonances: w

G̃1@G̃2, it follows W̃1'G̃1 while the corrections fromG̃1 to

W̃2 can mostly not be neglected. In any case, the nonlin

term in W̃k , Eq. ~20!, causes a nonexponential decay of t
two resonance states. Only when the line shape of a ce

resonancek is of Breit-Wigner type andG̃k is almost con-
stant in a large energy region aroundẼk , the statesk will
decay according to an exponential law@13#.

When the two resonance states lie at the same energy
their widths are different, then follows from Eqs.~19! and
~20! that the contributions from both resonance states a
hilate each other atE5Ẽ15Ẽ2, i.e., the cross section van
ishes at that energy where the two resonance states lie.
destructive interference has been traced numerically in R
@14# for two resonance states coupled to one channel
varying the coupling strength between the states and the

tinuum. WhenG̃1@G̃2, the narrow resonance appears as
dip in the cross section that is determined mainly by
broad resonance. This is in accordance with Eq.~20!: for

E→ 1
2 (Ẽ11Ẽ2), follows W̃1→G̃1 andW̃2→2G̃2.

For illustration, the cross section calculated with tw
neighboring resonance states is shown in Fig. 1. The widt

one of the states is fixed toG̃150.05 ~in arbitrary units!

while that of the other one is varied betweenG̃250.01 and

5.0. WhenG̃2@G̃1, it is G̃2' const in the energy region o
1-5
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I. ROTTER PHYSICAL REVIEW E 68, 016211 ~2003!
the narrow resonance, and the cross section shows a d
the energyẼ1. In this case, the broad resonance plays
role of a background for the narrow resonance. When
widths of both states are equal, the structure of the cr
section is similar to that caused by Eq.~21! at the double

pole of theS matrix. WhenG̃2,G̃1, the two peaks in the
cross section are no longer symmetrical in relation to
center atE58.

The corresponding coupling coefficientsW̃1 and W̃2

~Figs. 2 and 3! show a resonancelike behavior atE5(Ẽ1

1Ẽ2)/2. While the absolute values show the same tende
for both states, their phases behave differently. The phas
the broad state is almost not influenced by the interac
with the narrow one, while the phase of the narrow st
jumps by 2p at the energyE5(Ẽ11Ẽ2)/2. This is caused

by the minimum of Re(W̃k), which is reached atE5(Ẽk

1Ẽl)/2. The minimum value isG̃k2G̃ l'G̃k for the broad

state, but2G̃ l for the narrow one. In both cases, Im(W̃k( l ))
oscillates and vanishes atE5(Ẽk1Ẽl)/2. These results are
in agreement with the fact that the broad resonance s
plays the role of a background for the narrow resona
state.

Of special interest is the caseG̃15G̃2. The resonance be
havior of the coupling coefficients appearing atE5(Ẽ1

1Ẽ2)/2 is independent of the distanceuẼ12Ẽ2u of the two
resonance states. It reflects the properties of a double po
the S matrix. One clearly sees the phase jump byp at E

5(Ẽ11Ẽ2)/2 ~Figs. 2 and 3!. This energy Ecr[(Ẽ1

1Ẽ2)/2 is the critical value at which the wave functions
the two states are exchanged when the energy is param

FIG. 1. Cross section with two resonance states atẼ157.99 and

Ẽ258.01. The width of one of the states is fixed toG̃150.05, while

that of the other state is varied:G̃255.0 ~dashed curve!, G̃250.05

~full curve!, and G̃250.01 ~dash-dotted curve!. The dotted curves

are calculated withG̃251.0, 0.5, 0.1, 0.025, respectively. Cro
section and energy are given in arbitrary units.
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cally varied~see Sec. IV!. Here,W̃50. However, the phase
jump of p does not appear at every zero of the cross sect
see Figs. 1–3. It follows further that the resonance beha
of the coupling coefficients plays a role only for resonan
states lying near to one another.

As can be seen in Fig. 1, the interferences between
different resonance states cause, in the one-channel ca
separation of the peaks in the cross section. In this man
the interferences may feign the existence of well-isola
resonance states in spite of their strong overlapping. An
treme case is the case with two separated peaks appeari
the cross section with a double pole of theSmatrix @2,10,14#
or in its neighborhood, Fig. 1.

The line shape of the peaks in the cross section is
scribed usually by means of energy-independent Fano
rameters. A recent example, is the experimentally obser
narrow peak in the conductance through a quantum dot c
trolled by varying the strength of the magnetic field@22#. The
energy-independent Fano parameters are related to a r
sentation of theS matrix ~19! with energy independentWk8

FIG. 2. Coupling coefficientW̃1 of the resonance state atẼ1

57.99. The width isG̃150.05. The position and width of the othe
state is as in Fig. 1.
1-6
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EFFECTIVE HAMILTONIAN AND UNITARITY OF TH E . . . PHYSICAL REVIEW E 68, 016211 ~2003!
@instead of the energy dependentW̃k in Eq. ~20!#:

Wk85G̃kS 12 i
G̃ l

Ẽk2Ẽl2
i

2
~ G̃k2G̃ l)

D . ~22!

In the literature, mostly theWk8 are used since they provid
the standard parametrization of theS matrix. A recent ex-
ample is the analysis of the biorthogonality of resonan
wave functions in the molecule NO2 @23#. The representation
~22! is equivalent to Eq.~20!, except in approaching a doub
pole of the S matrix where Eq.~22! has a singularity in
contrast to Eq.~20!. The Wk8 lose, however, their physica
meaning as the coupling matrix elements between reson
states and continuum in the overlapping regime@10#. For this
reason, we will not consider them in this paper. Instead,

FIG. 3. Coupling coefficientW̃2 of the resonance state atẼ2

58.01. The position and width of the other state as well as

width G̃2 is as in Fig. 1. In the upper part,uW̃2u is multiplied by 1
~dashed curve!, 100 ~full curve!, and 500~dash-dotted curve!, and
by 5, 10, 50, and 200, respectively~dotted curves!.
01621
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will use theW̃k that are meaningful also around double po
of the S matrix according to Eq.~21!.

It is easy to generalize the study to more than two re
nance states. Suppose

S5 )
n51

N E2Ẽn2
i

2
G̃n

E2Ẽn1
i

2
G̃n

~23!

instead of Eq.~17!. In an analogy with Eqs.~19! and~20!, it
follows

S512 i(
n

W̃n

E2Ẽn1
i

2
G̃n

, ~24!

with

W̃n5G̃nS 12 i(
G̃m

Xn1Xm

2(
G̃m•G̃ l

XnXm1XnXl1XmXl
2••• D ~25!

and Xn[E2Ẽn1( i /2)G̃n . The sum in the second term o
Eq. ~25! is running overmÞn and that in the third term ove
mÞn and lÞm,n. The denominatorXn1Xm of the second
term is linear in E, while that of the third term,XnXm

1XnXl1XmXl , is quadratic inE. In any case, theW̃n de-
pend on energy in a nontrivial manner.

As follows from Eqs.~24! and ~25!, the coupling coeffi-

cients at a triple pole of theS matrix areW̃n5G̃n/3 ~in con-

trast toW̃n50 at a double pole!. Here, theSmatrix contains
terms up to third order. When one of the widths is mu

larger than the other ones in the three-resonance caseG̃ l

@G̃k(k5n,m), it is W̃l'G̃ l and W̃k52G̃k when E5 1
2 (Ẽl

1Ẽk). These relations are in complete analogy with tho
obtained for the two-resonance case.

In Figs. 4 and 5, the cross sections with three resona
states are shown, two of which are lying symmetrica
around the position of the third one atE5Ẽ358, as well as

the coupling coefficientsW̃3. The different curves in Fig. 4

are obtained by varying the widthG̃3 between 0.05 and 5. In
the first case, the widths of all three states are equal, whil
the other cases, the middle state overlaps the narrower o

WhenG̃3@G̃k (k51,2), the broad state can be considered
a ‘‘background’’ for the other two: these appear as dips in
cross section. This can be seen better in Fig. 6 where

broad resonance state (G̃353.0) is shown that overlaps two

narrow ones (G̃15G̃250.05). In both cases, a peak appea
in the middle of the spectrum atE58 in contrast to the
two-resonance case, Fig. 1. In Fig. 5, the widths of all th
states are kept constant, while the distance between the

e

1-7
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I. ROTTER PHYSICAL REVIEW E 68, 016211 ~2003!
FIG. 4. Cross section~top! with three resonance states atẼ1

57.99, Ẽ258.01, Ẽ358.0 and G̃15G̃250.05, G̃350.05 ~full

curve!, G̃351.0 ~dash-dotted curve!, and G̃355.0 ~dashed curve!.

Coupling coefficient~middle and bottom! W̃3 of the resonance stat

in the middle of the spectrum.uW̃3u is multiplied by 100 ~full
curve!, 5 ~dash-dotted curve!, and 1~dashed curve!. Cross section
and energy are given in arbitrary units.
01621
FIG. 5. Cross section~top! with three resonance states of width

G̃15G̃25G̃350.05 atẼ157.99, Ẽ258.01, Ẽ358.0 ~dotted curve!;

Ẽ157.9, Ẽ258.1, Ẽ358.0 ~dash-dotted curve!; and Ẽ157.75, Ẽ2

58.25, Ẽ358.0 ~full curve!. Coupling coefficientW̃3 ~middle and
bottom! of the resonance state in the middle of the spectrum. Cr
section and energy are given in arbitrary units.
1-8
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EFFECTIVE HAMILTONIAN AND UNITARITY OF TH E . . . PHYSICAL REVIEW E 68, 016211 ~2003!
varied. Although the peaks in the cross section seem to

well isolated from one another for (Ẽk2Ẽk61)/(G̃k1G̃k61)
52.5 ~full curve!, the interferences between the resonan
states are not vanishing.

Interesting are again the phase jumps of the coupling

FIG. 6. Cross section~top! with one resonance state of widt

G̃353.0 at Ẽ358.0 ~dotted curve! and with two additional reso-

nance states of widthsG̃15G̃250.05 atẼ154.0 andẼ2510.0, re-
spectively~full curve!. Coupling coefficients~middle and bottom!

W̃1 ~dashed!, W̃2 ~dash-dotted!, and W̃3 ~full curve! of the three

resonance states.uW̃1u anduW̃2u are multiplied by 60. Cross sectio
and energy are given in arbitrary units. Note the different ene
scales for the cross section and the coupling coefficients.
01621
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efficients W̃3 at the critical values of the energyEcr5(Ẽk

1Ẽ3)/2; k51,2. They are mostly smaller than those ofW̃1

and W̃2 ~not shown!. The influence of a broad resonanc
state on the coupling coefficients of narrow ones is illustra
in Figs. 6 and 7 with the state 3, being, respectively, mu
broader and much narrower than the states 1 and 2. At
energies 6 and 9, the states 1 and 2, respectively, inte
with the state 3 while the interference picture at the energ
is caused by the two states 1 and 2 with equal widths. T
phase jump ofp at this energy~Fig. 7! is reduced in the

presence of the broad resonance state~Fig. 6!. Also, uW̃1u
and uW̃2u differ in the two cases without and with a broa
state.

Measurements of phase and magnitude of the reflec
and transmission coefficients of a quantum dot are perform
in Ref. @24#. As a result, the phases of the dot’s transmiss
and reflection coefficients change abruptly by aboutp at
some energy in the resonance peak. The phase change
very similar to those observed in the present calculations

theW̃ in the one-channel case~see the figures!. As discussed
above, they are related to the unitarity of theS matrix in the
overlapping regime. The results are expected to be sim
for the case with more channels~or terminals! since, as will
be shown in Sec. IV, they are characteristic of the intrin

wave functionsF̃k andF̃k
ch, respectively, of the system.

In the consideration, presented in this section, theẼk and

G̃k are assumed to be independent of the energy. This
mostly, a good approximation in the energy range of
resonance statek. In any case, the energy dependence of

coupling coefficientsW̃k arises primarily from their reso
nance behavior caused by a neighboring resonance state
~20!. It may be influenced, of course, by the energy dep

dence ofẼk and G̃k , especially when the levels repel o
attract each other by varying a certain parameter.

IV. WAVE FUNCTIONS NEAR AVOIDED LEVEL
CROSSINGS IN THE COMPLEX PLANE

The coupling coefficients between system and continu
are defined by (g̃k

c)2, Eq. ~5!. Their energy dependence an
phase are determined, in the one-channel case, by the en

dependence and phase of the (F̃k)
2 ~after removing the com-

mon phase and energy dependence caused by thejE
c ). Much

can, therefore, be learned on the behavior of the coup
coefficients between system and environment from a st

of the wave functionsF̃k .
Characteristic of the overlapping regime are avoided le

crossings in the complex plane. At an avoided level cross
the wave functions of the two crossing states are exchan
This fact is very well known for a long time for discret
states ~Landau-Zener effect!. It holds also for resonance
states in the adiabatic limit@2#. The difference between
avoided crossings of discrete and resonance states con
mainly in the fact that resonance states may cross in
complex plane even when the interaction between them
nonvanishing and, furthermore, that the crossing may l

y

1-9
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I. ROTTER PHYSICAL REVIEW E 68, 016211 ~2003!
not only to level repulsion but also to level attraction. Wh
level repulsion is accompanied by the tendency to equilib
the widths of the resonance states, level attraction is acc
panied by the formation of different time scales in t
system.

FIG. 7. The same as Fig. 6, butG̃35331025.
01621
te
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The avoided level crossing of resonance states can
traced back to a branch point in the complex plane@25#.
When the conditions for crossing of the two levels are f
filled, the branch point in the complex plane is nothing e
than a double pole of theSmatrix ~see also Ref.@26#!. In any
case, the wave functions of the two levels are exchange
the critical value of the parameter at which the two lev
avoid crossing~or cross in one point!. Here, either the widths
or the energies~positions! of both states are equal. In the fir
case, the avoided crossing happens, as for discrete state
the energies of the resonance states traced as a functio
the considered parameter. In the second case, howeve
appears in their widths.

Further studies have shown that the wave functions at
critical valueacr of the parametera are exchanged accordin
to

F̃k→6 i F̃ l , ~26!

wherek and l are the two crossing states. This relation h
been obtained analytically@25# as well as in a numerica
study of atoms in a laser field@16#. It is related to nonlinear
terms that appear in the Schro¨dinger equation due to the
biorthogonality of the eigenfunctions of the effective Ham
tonianH. At acr, the sign of the imaginary part of the wav

functionF̃k jumps from1 to 2 ~or opposite! even when the

two states avoid crossing andAk[uF̃ku remains finite@25#.
This means, in a certain parameter rangeamin<acr<amax, the
wave functions of the two statesk and lÞk are mixed,

F̃k
ch5bkF̃k6 ib lF̃ l . ~27!

The wave functionsF̃k
ch change smoothly~without any jump

of the sign of their components!

from bk→61, b l→0 at a→amin,acr

to bk→0, b l→61 at a→amax.acr. ~28!

The valuesamin and amax may be quite different from one
another@25#. Only in the case where the avoided level cros
ing shrinks to one point, being the double pole of theS
matrix, bk50 or 61 for all a but acr. In any case, the two

wave functions (1/A2)(F̃k6 i F̃ l) and (1/A2)(F̃ l7 i F̃k) re-
main unchanged ata5acr under the exchange~26!.

Hence, in the parameter rangeamin,a,amax, the wave

functions of the two states areF̃k
ch, but not F̃k (k51,2).

The two wave functions are restored, after the exchang
acr, only ata>amax. In other words, using the representatio

F̃k
ch5uF̃k

chueiuk, ~29!

uk depends ona whenamin,a,amax. Beyond this paramete
area,uk depends ona much weaker~if at all!. After remov-
ing a common phase factor, it follows from Eq.~28! for an
avoided level crossing near the double pole:uk→6p/4 and
1-10
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EFFECTIVE HAMILTONIAN AND UNITARITY OF TH E . . . PHYSICAL REVIEW E 68, 016211 ~2003!
63p/4, respectively, in approachingacr anduk→0 or p in
approachingamin or amax. At acr, the states are chiral.

The comparison of Eq.~26! with the experimental data
obtained from microwave cavities has been discussed in
tail in Ref. @27#. All the data published in Refs.@28,29# for
the case of two levels of the system that are well isola
from the other ones, can be explained by means of Eq.~26!.
Some chirality appears: left and right turns around the dou
pole of the S matrix with bk5b l are different from one
another according to Eqs.~27! and ~28!.

Phase changes of the wave functions in the conducta
through a microwave cavity have been considered in R
@30,31#. The question is studied to what extent the transp
through the cavity changes the structure of its internal w
functions. It is demonstrated theoretically as well as exp
mentally @30# that the standing waves of the original cavi
are transformed more or less completely into running wa
propagating from the entrance antenna to different exit po
This is expressed by the two limiting cases:~i! the real and
imaginary parts of the wave functions are strongly cor
lated, and~ii ! they are completely uncorrelated. In the la
case, the real and imaginary parts of the wave function
the resonance states evolve independently in the open m
wave cavity.

In Ref. @32#, the phase difference between two modes
been measured in a cavity composed of two almost iden
semicircular parts. The two modes are each localized in
of the semicircular parts of the cavity and are excited se
rately by appropriately positioned dipole antennas. The c
responding two eigenvalues are well separated from all
other ones. By varying two parameters~designed here to
gether bya) of the cavity, their avoided crossing in the com
plex plane to a~almost! true crossing can be traced. Furthe
more, the eigenfunctions are studied by mapping
distributions of the electric field. Finally, the phase differen
D5uk2u l between the antennas has been found for differ
distances ofa from the critical valueacr. The results ob-
tained in the experiment@32# are D→p/2 for a→acr and
D5p for a beyond the rangeamin,a,amax. They agree with
Eqs.~27! and ~28! by using the representation~29! @33#.

According to Eq.~5!, the phase of the coupling coeffi

cients (g̃k
c)2 is determined by that of (F̃k)

2. Considered as a
function of a certain parameter, the phases of both exp
sions vary, in the one-channel case, in the same man
Since the parameter may be also the energy of the sys
@2#, the phase of the (g̃k

c)2 varies generically with the energ

in the same manner as the phase of the (F̃k)
2. The results

discussed above are in full agreement with those follow
immediately from the unitarity of theS matrix, Figs. 2–7.
Even the jumps byp appearing in the phases of the coupli

coefficientsW̃ in Figs. 2, 3, and 7 can be explained by Eq
~26! and ~27!. In other words, Eqs.~26!–~28! coincide with
the postulation of the unitarity of theS matrix. In any case,
nonlinearities are responsible for the energy dependenc
the coupling coefficients between system and continuum

In realistic systems, mostly more than two resonan
states are coming close to one another, i.e., avoided cros
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of more than two resonance states take place in the param
rangeamin,a,amax. As an extreme case, the branch point
the complex plane may be a multiple pole of theS matrix.
The relation between the different wave functions is, in su
a case, more complicated than that for two states where
wave functions of only two resonance states are exchan
according to Eq.~26!, mixed in the rangeamin,a,amax and
restored beyond this range. Such a situation is studied
perimentally @28# as well as theoretically in different ap
proaches@4,25,34,35#, compare also Figs. 2 and 3 for tw
resonance states with Figs. 4 and 5 for three resonance s
as well as Fig. 6 with Fig. 7.

V. CONCLUDING REMARKS

The resonance phenomena are described well by two
gredients also at high level density. The first ingredient is
effective HamiltonianH that contains all the basic structur
information involved in the HamiltonianH, i.e., in the
Hamiltonian of the corresponding closed system with d
crete eigenstates. Moreover,H contains the coupling matrix
elementsWk

cc8 between discrete states and continuum wh
account for the changes of the system under the influenc
its coupling to the continuum. These matrix elements
responsible for the non-Hermiticity ofH and its complex
eigenvalues which transfer the discrete states into reson
states and determine not only their positions but also th
~finite! lifetimes.

The second ingredient is the unitarity of theS matrix that
has to be fulfilled in all calculations of resonance pheno
ena. The unitarity of theS matrix causes a nontrivial energ

dependence of the coupling matrix elementsW̃k
cc8 between

resonance states and continuum. This energy dependenc
comes decisive in the overlapping regime even in the c
the lifetimes of the overlapping states are very different fro
one another and the different long-lived states seem to
well-isolated from one another. It is taken into account in t
unified description of structure and reaction aspects si
any statistical or perturbative assumptions are avoided
solving the basic equation~1!. The unitarity of theS matrix
influences also the phases of the wave functions of the r
nance states that change generically in approaching avo
level crossings in the complex plane.

In the nonoverlapping regime, both ingredients are f
filled in almost all theoretical approaches. Here, the wa
functions and positions of the resonance states are descr
to a good approximation, by the wave functions and po
tions of the discrete states of the corresponding closed
tem. The coupling matrix elements between system and c
tinuum can be calculated by means of the wave functions
the discrete states. They are energy independent, to a
approximation.

In the overlapping regime, however, with many avoid
level crossings, the wave functions of the resonance st
suffer phase changes. Furthermore, the coupling coeffici
of the resonance states to the continuum show a resona
like behavior caused by the interaction with a neighbo
resonance state. Both effects are described by nonlin
terms appearing in the Schro¨dinger equation and theS ma-
trix, respectively. They are related to one another and can
be neglected at high level density.

As a conclusion of these results, the coupling of a qu
1-11
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I. ROTTER PHYSICAL REVIEW E 68, 016211 ~2003!
tum system to the environment may change its propert
The changes are small as long as the coupling strength
tween system and environment is smaller than the dista
between the individual states of the unperturbed system,
smaller than the distance between the eigenstates of
HamiltonianH. The changes can, however, not be neglec
when the coupling to the continuum is of the same orde
magnitude as the level distance or larger. In such a case
changes can be described neither by perturbation theory
by introducing statistical assumptions for the level distrib
tion. Here, nonlinear effects become important which caus
redistribution of the spectroscopic properties of the sys
and, consequently, changes of its features.

Under the influence of the coupling to the continuum, n
only level repulsion but also level attraction may appear. T
first case is accompanied by the tendency to form a unifo
nt

.

.

s

E

.S

01621
s.
e-

ce
e.,
he
d
f
he
or
-
a

m

t
e
m

time scale for the system while different time scales
formed in the second case. The formation of different tim
scales in an open quantum system, which is accompanie
level attraction, is accompanied also by the appearance
nontrivial energy and phase dependence of the coupling

efficientsW̃. The use of an effective non-Hermitian Hami
ton operator in describing scattering processes in the o
lapping regime is therefore meaningful only when, at t

same time, the energy dependence of theW̃ is considered.
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